skip to main content


Search for: All records

Creators/Authors contains: "Dotter, Aaron"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Recent work on metal-intermediate globular clusters (GCs) with [Fe/H] = −1.5 and −0.75 has illustrated the theoretical behavior of multiple populations in photometric diagrams obtained with the JWST. These results are confirmed by observations of multiple populations among the M dwarfs of 47 Tucanae. Here we explore multiple populations in metal-poor GCs with [Fe/H] = −2.3. We take advantage of synthetic spectra and isochrones that account for the chemical composition of multiple populations to identify photometric diagrams that separate the distinct stellar populations of GCs. We derive high-precision photometry and proper motion for main-sequence (MS) stars in the metal-poor GC M92 from JWST and Hubble Space Telescope images. We identify a first-generation (1G) and two main groups of second-generation (2G A and 2G B ) stars and investigate their kinematics and chemical composition. We find isotropic motions with no differences among the distinct populations. The comparison between the observed colors of the M92 stars and the colors derived by synthetic spectra reveals that the helium abundances of 2G A and 2G B stars are higher than those of the 1G by Δ Y ∼ 0.01 and 0.04, respectively. The m F090W versus m F090W − m F277W color–magnitude diagram shows that below the knee MS stars exhibit a wide color broadening due to multiple populations. We constrain the amount of oxygen variation needed to reproduce the observed MS width, which is consistent with results on red giant branch stars. We conclude that multiple populations with masses of ∼0.1–0.8 M ⊙ share similar chemical compositions. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  2. Context. Many physical processes taking place during the evolution of binary stellar systems remain poorly understood. The ever-expanding observational sample of X-ray binaries (XRBs) makes them excellent laboratories for constraining binary evolution theory. Such constraints and useful insights can be obtained by studying the effects of various physical assumptions on synthetic X-ray luminosity functions (XLFs) and comparing them with observed XLFs. Aims. In this work we focus on high-mass X-ray binaries (HMXBs) and study the effects on the XLF of various, poorly constrained assumptions regarding physical processes, such as the common-envelope phase, core collapse, and wind-fed accretion. Methods. We used the new binary population synthesis code POSYDON , which employs extensive precomputed grids of detailed stellar structure and binary evolution models, to simulate the entire evolution of binaries. We generated 96 synthetic XRB populations corresponding to different combinations of model assumptions, including different prescriptions for supernova kicks, supernova remnant masses, common-envelope evolution, circularization at the onset of Roche-lobe overflow, and observable wind-fed accretion. Results. The generated HMXB XLFs are feature-rich, deviating from the commonly assumed single power law. We find a break in our synthetic XLF at luminosity ∼10 38 erg s −1 , similar to observed XLFs. However, we also find a general overabundance of XRBs (up to a factor of ∼10 for certain model parameter combinations) driven primarily by XRBs with black hole accretors. Assumptions about the transient behavior of Be XRBs, asymmetric supernova kicks, and common-envelope physics can significantly affect the shape and normalization of our synthetic XLFs. We find that less well-studied assumptions regarding the circularization of the orbit at the onset of Roche-lobe overflow and criteria for the formation of an X-ray-emitting accretion disk around wind-accreting black holes can also impact our synthetic XLFs and reduce the discrepancy with observations. Conclusions. Our synthetic XLFs do not always agree well with observations, especially at intermediate X-ray luminosities, which is likely due to uncertainties in the adopted physical assumptions. While some model parameters leave distinct imprints on the shape of the synthetic XLFs and can reduce this deviation, others do not have a significant effect overall. Our study reveals the importance of large-scale parameter studies, highlighting the power of XRBs in constraining binary evolution theory. 
    more » « less
  3. Abstract

    Mass measurements from low-mass black hole X-ray binaries (LMXBs) and radio pulsars have been used to identify a gap between the most massive neutron stars (NSs) and the least massive black holes (BHs). BH mass measurements in LMXBs are typically only possible for transient systems: outburst periods enable detection via all-sky X-ray monitors, while quiescent periods enable radial velocity measurements of the low-mass donor. We quantitatively study selection biases due to the requirement of transient behavior for BH mass measurements. Using rapid population synthesis simulations (COSMIC), detailed binary stellar-evolution models (MESA), and the disk instability model of transient behavior, we demonstrate that transient LMXB selection effects introduce observational biases, and can suppress mass-gap BHs in the observed sample. However, we find a population of transient LMXBs with mass-gap BHs form through accretion-induced collapse of an NS during the LMXB phase, which is inconsistent with observations. These results are robust against variations of binary evolution prescriptions. The significance of this accretion-induced collapse population depends upon the maximum NS birth massMNS,birthmax. To reflect the observed dearth of low-mass BHs,COSMICandMESAmodels favorMNS,birthmax2M. In the absence of further observational biases against LMXBs with mass-gap BHs, our results indicate the need for additional physics connected to the modeling of LMXB formation and evolution.

     
    more » « less
  4. Abstract

    When a compact object is formed in a binary, any mass lost during core collapse will impart a kick on the binary’s center of mass. Asymmetries in this mass loss or neutrino emission would impart an additional natal kick on the remnant black hole or neutron star, whether it was formed in a binary or in isolation. While it is well established that neutron stars receive natal kicks upon formation, it is unclear whether black holes do as well. Here, we consider the low-mass X-ray binary MAXI J1305-704, which has been reported to have a space velocity ≳200 km s−1. In addition to integrating its trajectory to infer its velocity upon formation of its black hole, we account for recent estimates of its period, black hole mass, mass ratio, and donor effective temperature from photometric and spectroscopic observations. We find that if MAXI J1305-704 formed via isolated binary evolution in the thick Galactic disk, then the supernova that formed its black hole imparted a natal kick of at least 70 km s−1while ejecting less than ≃1Mwith 95% confidence assuming uninformative priors on mass loss and natal kick velocity.

     
    more » « less
  5. Abstract

    We update the capabilities of the open-knowledge software instrument Modules for Experiments in Stellar Astrophysics (MESA). The newauto_diffmodule implements automatic differentiation inMESA, an enabling capability that alleviates the need for hard-coded analytic expressions or finite-difference approximations. We significantly enhance the treatment of the growth and decay of convection inMESAwith a new model for time-dependent convection, which is particularly important during late-stage nuclear burning in massive stars and electron-degenerate ignition events. We strengthenMESA’s implementation of the equation of state, and we quantify continued improvements to energy accounting and solver accuracy through a discussion of different energy equation features and enhancements. To improve the modeling of stars inMESA, we describe key updates to the treatment of stellar atmospheres, molecular opacities, Compton opacities, conductive opacities, element diffusion coefficients, and nuclear reaction rates. We introduce treatments of starspots, an important consideration for low-mass stars, and modifications for superadiabatic convection in radiation-dominated regions. We describe new approaches for increasing the efficiency of calculating monochromatic opacities and radiative levitation, and for increasing the efficiency of evolving the late stages of massive stars with a new operator-split nuclear burning mode. We close by discussing major updates toMESA’s software infrastructure that enhance source code development and community engagement.

     
    more » « less
  6. Abstract

    Binary stars undergo a variety of interactions and evolutionary phases, critical for predicting and explaining observations. Binary population synthesis with full simulation of stellar structure and evolution is computationally expensive, requiring a large number of mass-transfer sequences. The recently developed binary population synthesis codePOSYDONincorporates grids ofMESAbinary star simulations that are interpolated to model large-scale populations of massive binaries. The traditional method of computing a high-density rectilinear grid of simulations is not scalable for higher-dimension grids, accounting for a range of metallicities, rotation, and eccentricity. We present a new active learning algorithm,psy-cris, which uses machine learning in the data-gathering process to adaptively and iteratively target simulations to run, resulting in a custom, high-performance training set. We testpsy-crison a toy problem and find the resulting training sets require fewer simulations for accurate classification and regression than either regular or randomly sampled grids. We further applypsy-cristo the target problem of building a dynamic grid ofMESAsimulations, and we demonstrate that, even without fine tuning, a simulation set of only ∼1/4 the size of a rectilinear grid is sufficient to achieve the same classification accuracy. We anticipate further gains when algorithmic parameters are optimized for the targeted application. We find that optimizing for classification only may lead to performance losses in regression, and vice versa. Lowering the computational cost of producing grids will enable new population synthesis codes such asPOSYDONto cover more input parameters while preserving interpolation accuracies.

     
    more » « less
  7. Long-duration gamma-ray bursts are thought to be associated with the core-collapse of massive, rapidly spinning stars and the formation of black holes. However, efficient angular momentum transport in stellar interiors, currently supported by asteroseismic and gravitational-wave constraints, leads to predominantly slowly-spinning stellar cores. Here, we report on binary stellar evolution and population synthesis calculations, showing that tidal interactions in close binaries not only can explain the observed subpopulation of spinning, merging binary black holes but also lead to long gamma-ray bursts at the time of black-hole formation. Given our model calibration against the distribution of isotropic-equivalent energies of luminous long gamma-ray bursts, we find that ≈10% of the GWTC-2 reported binary black holes had a luminous long gamma-ray burst associated with their formation, with GW190517 and GW190719 having a probability of ≈85% and ≈60%, respectively, being among them. Moreover, given an assumption about their average beaming fraction, our model predicts the rate density of long gamma-ray bursts, as a function of redshift, originating from this channel. For a constant beaming fraction f B  ∼ 0.05 our model predicts a rate density comparable to the observed one, throughout the redshift range, while, at redshift z  ∈ [0, 2.5], a tentative comparison with the metallicity distribution of observed LGRB host galaxies implies that between 20% to 85% of the observed long gamma-ray bursts may originate from progenitors of merging binary black holes. The proposed link between a potentially significant fraction of observed, luminous long gamma-ray bursts and the progenitors of spinning binary black-hole mergers allows us to probe the latter well outside the horizon of current-generation gravitational wave observatories, and out to cosmological distances. 
    more » « less
  8. Abstract

    Two magnetic braking models are implemented inMESAfor use in theMISTstellar model grids. Stars less than about 1.3 solar masses are observed to spin down over time through interaction with their magnetized stellar winds (i.e., magnetic braking). This is the basis for gyrochronology and is fundamental to the evolution of lower-mass stars. The detailed physics behind magnetic braking are uncertain, as are 1D stellar evolution models. Thus, we calibrate our models and compare to data from open clusters. Each braking model tested here is capable of reproducing aspects of the data, with important distinctions; neither fully accounts for the observations. The Matt et al. prescription matches the slowly rotating stars observed in open clusters but tends to overestimate the presence of rapidly rotating stars. The Garraffo et al. prescription often produces too much angular momentum loss to accurately match the observed slow sequence for lower-mass stars but reproduces the bimodal nature of slowly and rapidly rotating stars observed in open clusters fairly well. Our models additionally do not reproduce the observed solar lithium depletion, corroborating previous findings that effects other than rotation may be important. We find additional evidence that some level of mass dependency may be missing in these braking models to match the rotation periods observed in clusters older than 1 Gyr better.

     
    more » « less
  9. Abstract We measure homogeneous distances to M31 and 38 associated stellar systems (−16.8 ≤ M V ≤ −6.0), using time-series observations of RR Lyrae stars taken as part of the Hubble Space Telescope Treasury Survey of M31 Satellites. From >700 orbits of new/archival Advanced Camera for Surveys imaging, we identify >4700 RR Lyrae stars and determine their periods and mean magnitudes to a typical precision of 0.01 day and 0.04 mag. Based on period–Wesenheit–metallicity relationships consistent with the Gaia eDR3 distance scale, we uniformly measure heliocentric and M31-centric distances to a typical precision of ∼20 kpc (3%) and ∼10 kpc (8%), respectively. We revise the 3D structure of the M31 galactic ecosystem and: (i) confirm a highly anisotropic spatial distribution such that ∼80% of M31's satellites reside on the near side of M31; this feature is not easily explained by observational effects; (ii) affirm the thin (rms 7–23 kpc) planar “arc” of satellites that comprises roughly half (15) of the galaxies within 300 kpc from M31; (iii) reassess the physical proximity of notable associations such as the NGC 147/185 pair and M33/AND xxii ; and (iv) illustrate challenges in tip-of-the-red-giant branch distances for galaxies with M V > − 9.5, which can be biased by up to 35%. We emphasize the importance of RR Lyrae for accurate distances to faint galaxies that should be discovered by upcoming facilities (e.g., Rubin Observatory). We provide updated luminosities and sizes for our sample. Our distances will serve as the basis for future investigation of the star formation and orbital histories of the entire known M31 satellite system. 
    more » « less